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Interaction between dislocations and precipitated
water bubbles during high temperature creep of
quartz

A. AYENSU
Department of Physics, University of Cape Coast, Cape Coast, Ghana

The modes of interaction between dislocations and precipitated water bubbles in quartz are

discussed. It is shown that dislocations may be locally anchored by bubbles, but are able to

break away under the action of applied stress. To escape, dislocations pinned by bubbles

must bow to equilibrium curvature. It was observed that escape via thermal activation alone

was not readily possible; however, unpinning of the dislocation through pipe diffusion was

found to be possible if the dislocation could drag the bubbles under applied stress. This

could result in very small strains leading to a microcreep rate linearly dependent on stress

and independent of the concentration of bubbles.
1. Introduction
The mechanism of hydrolytic weakening of quartz has
been attributed to the hydrolysis of strained Si—O
bonds residing at dislocation cores [1, 2]. The corres-
ponding Frank—Griggs expression for hydrolytic reac-
tion is

,Si—O—Si,#H
2
OP,Si—O—H · · · H—O—Si,

which is driven by the release of dislocation strain
energy. The overall plasticity is therefore assumed to
be associated with the scissioning of the SiO

4
tetra-

hedra, with molecular water acting as a plasticizer [3].
It is now accepted that high temperature deformation
of quartz is associated with continuous precipitation
of molecular water [4—12].

Irrespective of the validity of the atomic mecha-
nisms for hydrolytic weakening reported [13—19],
there remain the effects of dislocation—water bubble
interactions on glide and climb of dislocations. It must
be mentioned that the interaction of dislocations and
bubbles, and the subsequent hardening of the crystal
when water precipitates as bubbles, may be compli-
cated by Peierls-Nabarro forces. Subsequently, an ex-
ternal force greater than the Peierls—Nabarro force
must therefore be applied along a crystallographic
direction if the dislocation is to move freely over
considerable distances.

In this paper, the possible modes of disloca-
tion—water bubble interactions and the mechanisms of
accommodation that ensure large plastic flow by
climb and glide will be discussed. The analysis will be
likened to the theory of interaction of fission-gas bub-
bles with dislocations in irradiated nuclear materials
[20—23], or to the dragging of unsaturated impurity
clouds by dislocations [24]. A typical case of interest
that will be considered is whereby a dislocation is

pinned at two bubbles such that the glide and climb

0022—2461 ( 1997 Chapman & Hall
processes cause the dislocation to ‘‘bow’’ between two
fixed positions.

2. Results
2.1. Deformation substructures
Transmission electron micrographs of synthetic
quartz deformed at 800 °C are shown in Figs 1 and 2.
The arrows point to precipitated water bubbles in
a cloud of dislocations. The bubbles show up as the
white contrasts in the bright field images. Some of the
dislocations are pinned by bubbles and it is expected
that the bubbles may impose a retarding effect on
dislocation mobility because the precipitates remain
fixed in the matrix.

A bubble therefore presents to a dislocation an area
of crystal surface, so that the possibility of an image
force attracting the dislocation to the bubble may
exist. As a consequence of the interaction, the crystal
will gain a quantity of energy equivalent to the line
energy for a dislocation length equal to the bubble
diameter. This energy has to be resupplied if the dislo-
cation is to break free during subsequent deformation.
By the same token, this energy will have to be supplied
before the bubble can migrate during annealing in the
absence of dislocation motion.

In Fig. 1, dislocations H—H@ and S—S@ are bound to
water bubbles and must bow to significant curvature
before unpinning can take place. Similarly, as shown
in Fig. 2, dislocation X—X@ is bound to precipitated
water bubbles Y and Y

1
. The dislocation H—H@ in

Fig. 1 is pinned at two bubbles, Q and Q
1

that are
separated by a distance of &0.5 lm; and in order to
escape, the dislocation would have to adopt a curva-
ture by looping process. If the elastic energy per unit
length (or line tension) of the free dislocation is taken

to be s

0
"0.5 lb2 (where l is the shear modulus and
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Figure 1 Dislocation structures (H—H@ and S—S@) in synthetic quartz
after creep deformation at 800 °C. The arrows point to bubbles (e.g.
Q and Q

1
) of phase-separated water formed during post-deforma-

tion annealing. Foil plane (1 1 21 0), diffracted beam g"[1 11 0 1],
200 kV.

Figure 2 Phase-separated water, dislocations (X—X@) and Dauphiné
twin boundaries (shown by contrast effect) in synthetic quartz
deformed at 800 °C. The average water bubble diameter is 40.0 nm.
Arrows point to phase-separated water bubbles. (e.g. Y and Y

1
). Foil

plane (1 1 21 0), diffracted beam g"[1 11 0 1], 200 kV.

b is the magnitude of the Burgers vector), then the
energy of the dislocation line equivalent to the bubble
diameter, d, is ¼"0.5 lb2d. For quartz, l"80 GPa,
b"0.586 nm, d"40.0 nm and the line tension is
&1.4]10~8 J m~1. For a bubble of &40.0 nm dia-
meter, the corresponding force of attraction between

a bubble and a dislocation is at least 0.4 N m~1, and
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the total binding energy can be estimated to be
¼"6.4]10~16 J. Despite this low force of attrac-
tion, movement of the dislocation by small stresses
can be prevented by a hardening mechanism due to
pinning and can also be prevented if diffusional pro-
cesses are arrested.

Preferential precipitation of water bubbles on dislo-
cations could be due to long range attraction to the
dislocations by isolated bubbles or easier nucleation
as dislocations can emit or absorb vacancies that are
necessary to relax changes in volume due to precipita-
tion.

To preserve the silicon—oxygen ratio, it is conve-
nient to describe dislocation cores of SiO

4
tetrahedra

in single and double helices of a and c channels, as
shown in Fig. 3 [25], because diffusion can occur
along the core of the dislocation. Therefore, hydrolytic
weakening requires pipe diffusion of molecular water
to the dislocation cores, as diffusion of water molecu-
les through the channels would involve a much lower
activation energy compared with lattice diffusion.

2.2. Thermal escape of pinned dislocations
If a dislocation is introduced into a quartz crystal of
uniform concentration of bubbles of average value, C

0
,

the bubbles at a distance, k, from the dislocation will
be subjected to a force, F"!grad ¼, that might
draw the bubbles towards the dislocation with a drift
velocity, v"D

B
F/k¹ (where D

B
is the diffusion coeffi-

cient of the bubbles, k is the Boltzmann constant, ¹ is
the temperature and ¼ is the binding energy).

As observed in Section 2.1., in the case of un-
saturated bubble clouds, the dislocations may be con-
sidered to be pinned as illustrated in Fig. 4a. During
the unpinning process, a length of dislocation, l, be-
tween two pinning points (A

2
A

3
) bows out under an

increasing stress, until the dislocation escapes from
one pinning point as shown in Fig. 4b. If the pinning
bubbles are more or less equally spaced, the stress
concentrations at the neighbouring pinning bubbles
are then sufficient to unpin them too; and, eventually,
the whole loop (B

1
B

2
) is freed to bow out to sweep

through an area, A. Fig. 4c therefore represents a stage
of the unpinning process whereby between B

1
B

2
there

were many bubbles from which dislocations broke
away, with B

1
and B

2
acting as the stronger pinning

points or large bubble sites.
If q is the dislocation density,¸ is the distance between

pinning points, m is the atomic frequency and r is the
applied stress, the strain rate can be written as [26]

e5 "
q
¸

bAAm
b

¸B expA
!¼#rb2¸

k¹ B (1)

and at thermal equilibrium, ¸ is related to the binding
energy by the equation [27]

¸

b
"C

0
expA!

¼

k¹B (2)

where C
0
is the average bubble concentration and ¹ is

the temperature of the heat treatment during which

the bubbles are formed.



Figure 3 Structure of morphologically right-handed b-quartz (P6 22) viewed parallel to a in (a) and parallel to c in (b). In Fig. 3a, the numbers

4

1 and 2 represent the scissioning of SiO
4

tetrahedra.
As shown in Fig. 4c, if due to thermal agitation, k¹,
a length of the dislocation escapes under the action of
stress, r, at a curvature, 1/R"2r/lb, the energy
required to form this loop can be written as [26]

E" s h!2s sin
h

R!rbA (3)
C 0 A2BD
where s
0

is the line tension of the free dislocation,
which is related to the line tension of the pinned
dislocation, s, by the equation

s"s
0
!AC1

¼r

b2 B (4)

where the saturation concentration C
1
"1

2
, r is the cylin-
drical region of saturation where the concentration
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Figure 4 (a) Bowing-out of dislocation lines, (b) unpinning of dislocation lines, and (c) equilibrium curvature 1/R, of a length ¸, of pinned
dislocation under stress, where A

*
and B

*
are the pinning points, l is the length between two points, A is the area of unpinning, F the force
acting in the x- and y-directions and q the elastic energy per unit length, ¸ of the pinned dislocation, and h is the angle of curvature.
is of the order of C
1
and area, A"1

2
R2(h!sinh) is the

shaded region in Fig. 4c.
The energy, E, passes through a maximum value,

E
0
, when s

0
"s cos(h/2). For small angles, s/s

0
+1,

and ¸+2R sin(h/2)"(lb/r) sin(h/2). Substituting
s
0
"0.5 lb2 in Equation 3 and applying binomial

expansion, it can be deduced that the activation en-
ergy is

E
0
"2

3A
r¸

b2B¼C
1

(5)

and the corresponding length of the pinned disloca-
tion is

¸"2
lb

r AC1

¼r

lb4B
1@2

(6)

Substituting values of ¸"5]10~7m, r"d"4]
10~8m, b"5.86]10~10m, ¼"6.4]10~16 J, the
numerical value of E

0
is 3]10~11 J; which is a very

large energy and will lead to a negligible rate of ther-
mal escape. The alternative is to consider climb by
a pipe diffusion mechanism.

However, if there is a possibility of thermal ac-
tivated escape of dislocations from unsaturated bub-
bles, Equation 1 can be applied if, for small stress, the
area swept by each free dislocation loop is given as
A"r¸3/12 lb, and Equation 1 reduces to

e5 "
m¸C2

0
12 lb

r expA!
¼

k¹B (7)

after substituting o¸2"1 and Equation 2.

2.3. Dislocation climb by pipe diffusion
Fig. 4c illustrates a length of dislocation that is pinned
at two ends by water bubbles and is subjected to
a force, F, due to the applied stress, r. If the disloca-

tion loop is mobile in the direction of F, it will assume
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an equilibrium curvature, 1/R, obtained by equating
the force, s

0
dh, of the line tension on the arc, dl

("Rdh), to the applied force, rbdl, such that
1/R"2r/lb"2rb/s

0
.

For dynamic equilibrium, the mechanical force, rb,
per unit length of the dislocation, the force !lb2/2R
due to curvature and the viscous drag force,
!vk¹/D

B
b, due to velocity, v, exerted on the pinned

dislocation must all sum up to zero, so that

rb!
lb2

2R
!

vk¹

D
B
b
"0

The bowed dislocation must therefore move with velo-
city

v"Ap!
lb

2RB
b2D

B
k¹

(8)

which has the same form as Einstein’s mobility equa-
tion.

For material transport by pipe diffusion whereby
lattice diffusion is negligible, the climb proceeds en-
tirely by core transport between bubbles and disloca-
tions during the climb—drag process. If the dislocation
can adjust its shape quickly compared with the rate at
which the bubble is dragged, the dislocation is able to
maintain a uniform curvature, 1/R, which is in equili-
brium with the surface tension, c, and the pressure, p,
in the bubble.

For the climb of pinned dislocation, which is con-
trolled by pipe diffusion, all the vacancies that are
involved in the climb process must be supplied or
removed along the dislocation at the pinning points.
This requires that the adjacent dislocation link is able
to accept or supply these vacancies. Because the dislo-
cation is part of the three-dimensional network in
quartz (Fig. 3), this requirement is satisfied if the ori-
entations of adjacent links with respect to the stress

are such that one link acts overall as a vacancy source



and the other as the sink. As the diffusion distance
increases, the dislocation becomes more bowed.

The vacancy concentration at a bubble surface is
given by the relationship [20]

C
"
"C

%2
expCA2

c
a
!pB

b3

k¹D (9)

where C
%2

is the thermal equilibrium vacancy concen-
tration and a"d/2 is the bubble radius. The vacancy
concentration at the dislocation is given by

C
$
"C

%2
expCAr!

s

bRB
b3

k¹D (10)

In steady state conditions, C
"
"C

$
and hence

1

R
"Ar#p!

2c
a B

b

s
(11)

The dislocation climb behaviour by pipe diffusion is
determined or controlled by the effect of bubble mo-
bility. For diffusion controlled climb, the bubble mo-
bility can be expressed by the relationship [28]

M
B
"A

b

aB
4 D

B
k¹

(12)

where D
B

is the diffusion coefficient of the bubbles. If
the bubbles are of limited mobility, a dislocation can
adjust its configuration during the climb process, at
a rate that can be rapid in comparison with the rate of
bubble drag. The dislocation curvature is then given
by Equation 11 and the overall velocity is controlled
by the dragging processes, and Equation 8 then rep-
resents the drag velocity, v

$
.

However, if the bubble is relatively mobile, the
dragging process may be sufficiently rapid that the
dislocation cannot maintain the dynamic equilibrium
configuration defined by Equation 8; and if the drag
becomes so rapid, then the equilibrium curvature,
1/R"2rb/s, cannot be maintained. The dislocation
must then adopt a lesser effective curvature, such that
the processes of climb and drag occur at matching
rates.

2.4. Microcreep
As already observed, a dislocation subjected to a stress
too small to free it from pinned bubbles can only be
moved by dragging the bubbles along by diffusion,
which may lead to slower strain rates resulting in
microcreep.

At a temperature, ¹, large enough for thermal agita-
tion, k¹, to be larger than the binding energy, long
range elastic interaction between moving dislocations
and bubbles at an average distance, k, in the cloud can
be considered. Because ¼+10~16 J<k¹, where
k¹&10~20J, the above assumption cannot hold;
rather the bubbles are expected to be at a minimum
distance, k+b, from the dislocation, which can then
lead to the observed pinning. It is therefore the drag of
these pinning bubbles that contributes to creep defor-
mation.

The dragging contribution to the deformation leads

to a microcreep mechanism, and the microcreep rate,
Figure 5 Schematic diagram of microcreep for a dislocation drag-
ging mobile bubble.

e5
.
, can be deduced from pipe diffusion of a pinned

dislocation as illustrated in Fig. 5. When a bubble, G,
jumps forwards a distance, b, into position G

1
under

the applied stress, r, the dislocation loop MGN has
enough time to move forwards. The subsequent work
done by the stress is rb2¸, and the frequency of
vibration of this event is

m"m
0A

b

¸B expA!
º

B
k¹B"m

1
expA!

º
B

k¹B (13)

where m
0
(b/¸) is the frequency of vibration of MGN

and º
B

is the diffusion energy of the bubble.
Taking into account the forward and backward

jumps of the bubbles, the microcreep rate equation
can be written as

e5
.
"A

q

¸B (b2¸)m
0A

b

¸BCexpA!
º

B
!rb2¸

k¹ B
!expA!

º
B
#rb2¸

k¹ BD
or

e5
.
"A2q

b

¸

D
BB sin hA

rb2¸

k¹ B (14)

where D
B

is the diffusion coefficient of the bubble.
For quartz single crystals, if b&6]10~10m,
¸&5]10~7m, r&3]103Pa, then rb2¸/k¹;1,
and hence Equation 14 reduces to

e5
.
+2qD

B

rb3

k¹
(15)

Equation 15 shows that the microcreep rate resulting
from dislocation—bubble drag is directly proportional
to the applied stress and is independent of the concen-
tration of the bubbles. Hence, the microcreep stress
exponent, n

.
"1, agrees with the general criteria for

diffusion controlled creep.

3. Discussion
The experimental results presented in the previous
section demonstrate that bubbles can be formed at

dislocations and, that from theoretical considerations,
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bubbles can be dragged along by dislocations if the
applied stress is low, while for large stress, the disloca-
tions can break free completely.

For the bubble drag mechanism, it has been as-
sumed that the bubbles maintain equilibrium size. But
a significant departure from equilibrium conditions is
arbitrarily defined to occur when the fluid pressure
exceeds twice the surface tension restraining pressure,
i.e. p*2c/a [29]. If external sources and sinks for
vacancies exist, bubbles can achieve an equilibrium
condition if C

"
"C

%2
in Equation 9 by emitting va-

cancies if 2c/a' p, or by absorbing vacancies if
p'2c/a where the equilibrium radius is defined as
2c/p. For bubbles spaced less than 0.5 lm apart, it is
concluded that sufficient vacancies are available so
that p+2c/a. Higher excess pressure is also expected
when bubbles are more widely spaced; and in cases
where p becomes significantly greater than 2c/a, it is
conceivable that bubble growth by dislocation genera-
tion can occur.

If there are differences in bubble sizes, then there
must be a critical bubble size below which the bubbles
have a tendency to remain attached to the disloca-
tions; whereas the larger bubbles, due to their re-
stricted mobility, have a retarding effect [30]. It
should be noted that in Figs 1 and 2, the precipitated
water bubbles have nearly the same diameter of
&40 nm and no clear distinction can therefore be
made between any smaller or larger bubbles. The
interaction between bubbles and dislocations can then
be considered only in terms of the level of applied
stress while keeping the size term constant. At higher
stress levels, the surface tension force is insufficient to
stop the bubble drag movement.

4. Conclusions
1. There are two possible reactions when a disloca-

tion encounters a second phase bubble: the dislocation
may be pinned by the bubble or the dislocation may
drag the bubble with it. If the driving force for the
dislocation motion exceeds the pinning force exerted
by the bubble, the dislocation is pulled free of the
bubble and sweeps across the lattice.

2. Dislocations pinned by water bubbles can only
escape by climb through the pipe diffusion mecha-
nism. If the applied stress is very small, the dislocation
can escape by dragging the bubbles, which will lead to
a microcreep strain rate proportional to the applied
stress.

3. The presence of bubbles slows down the velocity
of movement of the dislocations provided the bubbles
are attached to the bubbles. The behaviour of precipi-
tates not attached to dislocations may be different, as
they remain fixed in the matrix and may either permit
local movement of the dislocation or complete dislo-
cation breakaway.

4. Thermal activation alone cannot facilitate dislo-

cation breakaway, and an applied stress is necessary.
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